Virginia

Standards of Learning Assessments

Spring 2003 Released Test

END OF COURSE GEOMETRY

Property of the Virginia Department of Education

© 2003 by the Commonwealth of Virginia Department of Education, James Monroe Building, 101 N. 14th Street, Richmond, Virginia, 23219. All rights reserved. Except as permitted by law, this material may not be reproduced or used in any form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage or retrieval system, without written permission from the copyright owner. Commonwealth of Virginia public school educators may photocopy or print any portion of these Released Tests for educational purposes without requesting permission. All others should direct their requests to the Commonwealth of Virginia Department of Education at (804) 225-2102, Division of Assessment and Reporting.

DIRECTIONS

Read and solve each question.

SAMPLE

If $\triangle A B C$ is similar to $\triangle A D E$, then $A B: A D=$? : $A E$. Which replaces the "?" to make the statement true?

A $A C$
B $A E$
c $D E$
D $B C$

1

What are the values of \boldsymbol{x}, and \boldsymbol{y} ?
A $x=91^{\circ}, y=98^{\circ}$
B $x=91^{\circ}, y=108^{\circ}$
C $x=101^{\circ}, y=98^{\circ}$
D $x=101^{\circ}, y=108^{\circ}$

2 Given: B, C, and D are collinear;
$\mathrm{m} \angle A C D=85^{\circ}$

What value of x will ensure that A, C, and E are also collinear?

F 75
G 85
H 95
J 105

3 A guy wire for a pole for a tennis net makes an angle of 62° with the ground.

What is the measure of the angle between the wire and the pole?

A 28°
B 62°
C 90°
D 180°

4

In the diagram, $\triangle A B C$ and $\triangle R S T$ are congruent equilateral triangles with corresponding sides parallel. What is the value of x ?

F 90°
G 120°
H 135°
J 144°

5 The measures of some angles are given in this figure.

What is the measure of $\angle N$?
A 40°
B 58°
C 82°
D 122°

6 Line m contains points ($1,-3$) and $(2,2)$. Which of the following pairs of points define a line parallel to line m ?

F $(0,0)$ and $(-1,1)$
G $(0,0)$ and $(1,5)$
H $(1,1)$ and $(6,2)$
J $(-4,0)$ and $(5,5)$

7

What value for x will show that lines l and m are parallel?

A 25
B 30
C 40
D 60

8

A construction engineer needs to make sure a ceiling beam is parallel to its corresponding floor beam. Using the drawing as a guide, which pair of measurements is sufficient to show the beams are parallel?

F $x=z$
G $y=w$
H $x=y$
J $y=z$

9 Use your compass and straightedge to construct a line that is perpendicular to $\overleftrightarrow{\boldsymbol{S T}}$ and passes through point O.

Which other point lies on this perpendicular?

A W
B X
C Y
D Z

10 Use a compass, straightedge, and the drawing below to answer the question.

Which point lies on the line that bisects $\angle C A B$?

F Q
G R
H S
J T

11 Use your compass to answer the following question.

Which line segment is congruent to $\overline{A B}$?

A $\overline{C D}$
B $\overline{C E}$
c $\overline{C F}$
D $\overline{C G}$

According to the Venn diagram, which is true?

F All football players play offense or defense.
G No football players play offense and defense.
H All football players play defense.
J Some football players play offense and defense.

13

$\overleftrightarrow{J K}$ and $\overleftrightarrow{R S}$ are parallel. Which of the following statements is true?

A $\frac{J R}{Q J}=\frac{K S}{R S}$
B $\frac{J K}{R S}=\frac{Q K}{S K}$
c $\frac{Q R}{K S}=\frac{Q S}{R J}$
D $\frac{Q R}{Q J}=\frac{Q S}{Q K}$

14 Triangles ABC and DEF are similar and have measurements as shown.

What is the measure of $\overline{E F}$?
F $\frac{21}{2}$
G $\frac{15}{2}$
H $\frac{9}{2}$
J $\frac{3}{2}$

15 Altitude $\overline{\boldsymbol{C E}}$ is drawn from right angle C of triangle $A B C$ forming right triangles $A C E$ and CBE.

Which statement concerning the 3 triangles is true?

A None of the triangles are similar.
B Only triangles $A C E$ and $C B E$ are similar.
C Triangle $A B C$ is similar to only triangle $A C E$.
D Triangle $A B C$ is similar to both triangle $A C E$ and triangle CBE .

16 Assuming these statements are true,
Some musicians are happy people. All happy people like music.
which of the following is a valid conclusion?

F All happy people are musicians.
G All musicians like music.
H Some happy people do not like music.
J Some musicians like music.

17 Triangle $A B C$ is a right triangle with the measures shown.

The length of $\overline{B C}$ is -
A 18 in.
B 24 in .
C 32 in .
D 576 in .

18 A customer provided this diagram of a patio to a fencing company.

What is the length of the unlabeled side?

F 10 ft
G 11 ft
H 12 ft
J 13 ft

19 In triangle $A B C, A C=6, A B=7$, and $B C=5$. Which is true?

A The measure of $\angle C$ is the least of the three angles.
B The measure of $\angle C$ is the greatest of the three angles.
C The measure of $\angle B$ is the greatest of the three angles.
D The measure of $\angle B$ is the least of the three angles.

20 In any $\triangle A B C$, which statement is always true?

F $\mathrm{m} \angle A+\mathrm{m} \angle B=90^{\circ}$
G $\mathrm{m} \angle A+\mathrm{m} \angle B<90^{\circ}$
н $A B+B C>A C$
J $A B+B C<A C$

21

Which of the following lists the sides of $\triangle A B C$ from least to greatest length?

A $\overline{A C}, \overline{B C}, \overline{A B}$
B $\overline{A C}, \overline{A B}, \overline{B C}$
C $\overline{A B}, \overline{A C}, \overline{B C}$
D $\overline{B C}, \overline{A C}, \overline{A B}$

22 To determine the distance across a pond, Harry made the measurements shown in the diagram.

Which is closest to the distance from R to S ?

F 3.48 m
G 19.7 m
H 20.3 m
J 113.4 m

23

Which triangle is similar to $\triangle X Y Z$?
A

B

C

D

24 In rhombus $A B C D, A C=30$ inches and $B D=40$ inches.

What is the perimeter of the rhombus?
F 25 in .
G 50 in.
H 100 in.
J 200 in .
$25 A B C D$ is a rhombus.

What are the coordinates of vertex C ?
A $(5,4)$
B $(6,4)$
C $(8,4)$
D $(4,3)$

26 The quadrilateral $A B C D$ is a parallelogram.

Which of the following pieces of information would suffice to prove that $A B C D$ is a rectangle?

F $A C=B D$
G $A B=A D$
H $\mathrm{m} \angle B=\mathrm{m} \angle D$
J $\angle A$ and $\angle D$ are supplementary

27 Three vertices of parallelogram $A B C D$ have coordinates $(-1,4),(3,8)$, and (5, 0).

What are the coordinates of the other first-quadrant vertex?

A $(-3,12)$
B $(-1,4)$
C $(1,4)$
D $(9,4)$

28 In the figure, the measure of $\angle C A D$ is twice the measure of $\angle C A B$.

What is the measure of $\angle C A B$?
F 120°
G 60°
H 45°
J 30°

29

Figure ABCDEFGH is a regular octagon. What is the measure of $\angle D C Q$?

A 135°
B 60°
C 45°
D 30°

The two adjacent figures are a regular hexagon and a regular octagon. What is the measure of $\angle P Q R$?

F 87.5°
G 90°
H 105°
J 120°

31

A, B, and C are points of tangency. $A P=4$ and $B Q=8$. What is the measure of $\overline{P Q}$?

A 4
B 8
C 12
D $\sqrt{32}$

32 The measure of arc $A C$ is 28°.

What is the measure of $\angle A D C$?
F 7°
G 14°
H 28°
J 56°
$33 \quad \overleftrightarrow{B D}$ is tangent to the circle at B and the measure of $\widetilde{A C}$ is 108°.

What is the measure of $\angle C B D$?
A 118°
B 72°
C 36°
D 18°

Which is a two-dimensional representation of the view from directly above the figure?

G

H

J

35 The figure shows a right circular cone on top of a hemisphere with the same radius.

To the nearest whole number, what is the volume of this solid?

A $201 \mathrm{~cm}^{3}$
B $256 \mathrm{~cm}^{3}$
C $278 \mathrm{~cm}^{3}$
D $309 \mathrm{~cm}^{3}$

36 Which of the following patterns could not be folded into a cube?

F

G

H

J

37 A cylindrical water container is 1.2 meters high and has a diameter of 4.6 meters. Approximately how many cubic meters of water will the container hold when it is half full?

A 4.33
B 9.97
C 29.93
D 39.87

38 What is the volume of a right square pyramid with a height of 3 centimeters and a base that measures 8 centimeters by 8 centimeters?

F $64 \mathrm{~cm}^{3}$
G $72 \mathrm{~cm}^{3}$
H $144 \mathrm{~cm}^{3}$
J $225 \mathrm{~cm}^{3}$

39 Line segments $A C$ and $B D$ intersect at E, as shown in the figure. $\overline{A B} \| \overline{C D}$, $D E=10, B E=15$, and $C E=20$.

What is the measure of $\overline{A E}$?
A 13
B 17
C 25
D 30

40

Which polygon shown above has only one line of symmetry?

F Rectangle $A B C D$
G Hexagon EFGHIJ
H Square $K L M N$
J Triangle $O P Q$

41 Consider this figure.

Which of the following is a rotation in the plane of the given figure?

A

B

C

D

42

If triangle $X Y Z$ is reflected across the y-axis to form triangle $X^{\prime} Y^{\prime} Z^{\prime}$, what is the coordinate of Y^{\prime} ?

F $(-3,2)$
G $(4,6)$
H $(2,-3)$
J (3, -2)

43 Which point is the greatest distance from the origin?

A $(-8,-5)$

B $(-9,1)$

C $(3,4)$

D $(9,2)$

44

Parallelogram $A B C D$ is positioned on a coordinate plane with the coordinates as shown. N is the midpoint of $\overline{B C}$. What are the coordinates of N ?

F $(2,3)$
G $(3.5,2)$
H $(2.5,6)$
J $(6,2.5)$

45 The slope of the line joining the coordinate points (3, -1) and (-4, 7) is -

A $\frac{-8}{7}$
B $\frac{-7}{8}$
C $\frac{-6}{7}$
D $\frac{-1}{8}$

Answer Key

Test Sequence	Correct Answer	Reporting Category	Reporting Category Description
1	A	001	Lines and Angles
2	G	001	Lines and Angles
3	A	001	Lines and Angles
4	G	001	Lines and Angles
5	C	001	Lines and Angles
6	G	001	Lines and Angles
7	D	001	Lines and Angles
8	H	001	Lines and Angles
9	B	001	Lines and Angles
10	H	001	Lines and Angles
11	B	001	Lines and Angles
12	J	002	Triangles and Logic
13	D	002	Triangles and Logic
14	H	002	Triangles and Logic
15	D	002	Triangles and Logic
16	J	002	Triangles and Logic
17	B	002	Triangles and Logic
18	F	002	Triangles and Logic
19	B	002	Triangles and Logic
20	H	002	Triangles and Logic
21	C	002	Triangles and Logic
22	G	002	Triangles and Logic
23	A	002	Triangles and Logic
24	H	003	Polygons and Circles
25	C	003	Polygons and Circles
26	F	003	Polygons and Circles
27	D	003	Polygons and Circles
28	G	003	Polygons and Circles
29	C	003	Polygons and Circles
30	H	003	Polygons and Circles
31	C	003	Polygons and Circles
32	G	003	Polygons and Circles
33	C	003	Polygons and Circles
34	H	004	Three-Dimensional Figures
35	A	004	Three-Dimensional Figures
36	J	004	Three-Dimensional Figures
37	B	004	Three-Dimensional Figures
38	F	004	Three-Dimensional Figures
39	D	004	Three-Dimensional Figures
40	J	005	Coordinate Relations, Transformations, and Vectors
41	A	005	Coordinate Relations, Transformations, and Vectors
42	F	005	Coordinate Relations, Transformations, and Vectors
43	A	005	Coordinate Relations, Transformations, and Vectors
44	J	005	Coordinate Relations, Transformations, and Vectors
45	A	005	Coordinate Relations, Transformations, and Vectors

