VIRGINIA STANDARDS OF LEARNING ASSESSMENTS

Spring 2003 Released Test

END OF COURSE ALGEBRA II

Property of the Virginia Department of Education

© 2003 by the Commonwealth of Virginia Department of Education, James Monroe Building, 101 N. 14th Street, Richmond, Virginia, 23219. All rights reserved. Except as permitted by law, this material may not be reproduced or used in any form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage or retrieval system, without written permission from the copyright owner. Commonwealth of Virginia public school educators may photocopy or print any portion of these Released Tests for educational purposes without requesting permission. All others should direct their requests to the Commonwealth of Virginia Department of Education at (804) 225-2102, Division of Assessment and Reporting.

Algebra II

DIRECTIONS

Read and solve each question. For this test you may assume that the value of the denominator of a rational expression is not zero.

SAMPLE

$$\frac{6(a+2)}{a} \cdot \frac{a^3}{a+2} =$$

$$A \quad \frac{6}{a^2}$$

$$B \quad \frac{6(a+2)}{a}$$

$$C \quad 6a^2$$

$$D \quad \frac{6a^2 + 24a + 24}{a^4}$$

1 What property is illustrated by the equation

$$3x(x+2) = 3x^2 + 6x?$$

- A Associative Property of Addition
- **B** Reflexive Property of Equality
- C Associative Property of Multiplication
- **D** Distributive Property
- 2 Which of the following statements is an example of the transitive property of inequalities?
 - **F** If $k \ge 0$, then |k| = k.
 - **G** If k < 6 and 6 < m, then k < m.
 - **H** If k < 6, then k + 2 < 8.
 - **J** If k < 6 and j > 0, then kj < 6j.

3 Which expression is equal to

$$\frac{(4y^{5} - 3y^{2})}{5y^{2}}?$$
A $4y^{5} - 2y^{2}$
B $\frac{4}{5}y^{3} + \frac{3}{5}$
C $\frac{5}{4}y^{-3} - \frac{5}{3}$
D $\frac{4}{5}y^{3} - \frac{3}{5}$

4 Which is equivalent to

$$\frac{7a}{15b} - \frac{2b}{5}?$$
F $\frac{a}{5}$
G $\frac{a}{2}$
H $\frac{7a - 6b^2}{15b}$
J $\frac{7a - 4b}{5}$

- 5 Which is equivalent to $(\sqrt{2})^3$?
 - **A** 2
 - **B** $\sqrt{2}$
 - $\mathbf{C} \quad 2\sqrt{2}$
 - **D** $\sqrt{6}$

- 6 Which is equivalent to $\sqrt[6]{a^2b^3}$?
 - **F** $\frac{1}{6}a^2b^3$
 - $\mathbf{G} \quad a^3b^2$
 - **H** $a^{3}b^{\frac{1}{2}}$
 - **J** $a^{\frac{1}{3}}b^{\frac{1}{2}}$

7 Which is a factored form of $9x^2 - 25$?

- A (3x 5)(3x + 5)
- **B** $(3x 5)^2$
- **C** $(3x + 5)^2$
- **D** $(9x 25)^2$

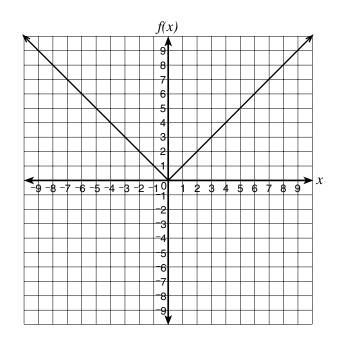
8 Which is a factor of

$$x^2 - 2x - 15?$$

F
$$(x - 3)$$

- G (x 15)
- **H** (x + 3)
- **J** (x + 5)

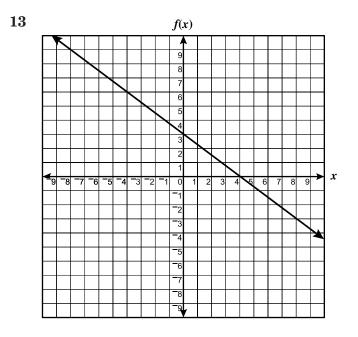
9 Which is equivalent to


$$(3 + 2i) (2 + 5i)?$$

- A -4 + 19i
- **B** 16 + 19i
- **C** 6 + 29i
- **D** 6 10i

10 Which is equivalent to $\sqrt{3} \cdot \sqrt{-3}$?

- **F** 3*i*
- **G** ⁻3*i*
- **Н** 9
- **J** 9*i*


11 Which type of function is shown?

- A Absolute value
- **B** Exponential
- C Linear
- **D** Quadratic
- 12 Which function includes the values in the table?

x	-2	-1	0	1	2
у	3	0	-1	0	3
	y = x - 1				
G y	y = x + 1				
н у	$y = x^2 - 1$				
J y	$y = (x - 1)^2$				

Which function is most closely represented by the graph?

 $\mathbf{A} \quad f(x) = \frac{4}{3}x$ **B** $f(x) = 3 - \frac{4}{3}x$ **C** $f(x) = 3 + \frac{3}{4}x$ **D** $f(x) = 3 - \frac{3}{4}x$ 14 What is the zero of the function

$$f(x) = 12x + 27?$$

27
 $\frac{9}{4}$

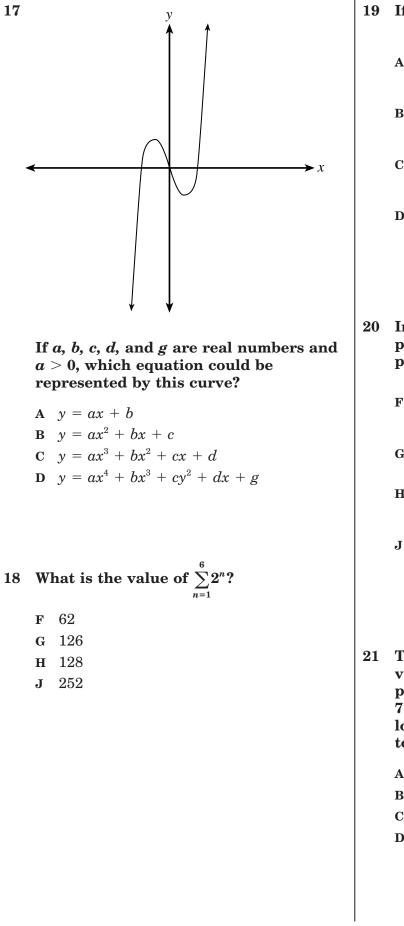
н 0

 $\frac{9}{4}$ G

 \mathbf{F}

- $\frac{9}{4}$ J
- 15 If the domain of f(x) = 3x + 5 is {-1, 0, 1, 2, 3}, what is the range?
 - **A** {0, 2, 9, 11, 14} **B** {-8, -5, -2, 1, 4} C $\{-4, -2, -1, 5, 8\}$ **D** {2, 5, 8, 11, 14}

16 The polynomial function


$$y = x^3 - 3x^2 + x + 1$$

has a zero between —

F ⁻⁴ and ⁻³ G -2 and -1H -1 and 0 **J** 3 and 4

4

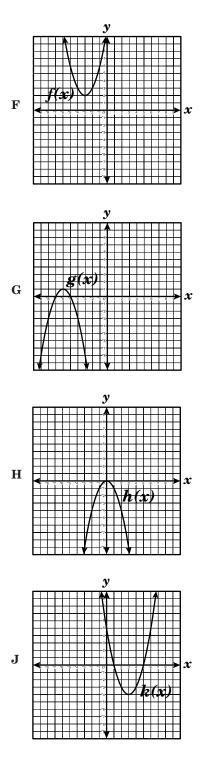
D If
$$a_n = 1 + \frac{1}{n}$$
, then what is a_9 ?
A $\frac{11}{10}$
B $\frac{10}{9}$
C $\frac{9}{8}$
D $\frac{3}{2}$

20 In which of the following is *z* directly proportional to *x* and inversely proportional to the square of *y*?

$$F \quad z = k \frac{x^2}{y}$$

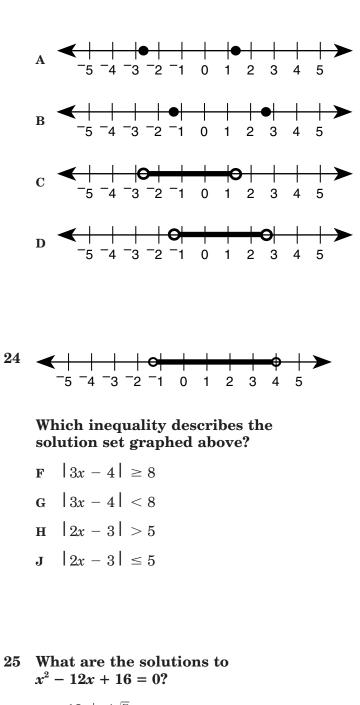
$$G \quad z = k x y^2$$

$$H \quad z = k \frac{x}{y^2}$$


$$J \quad z = k \frac{y}{x}$$

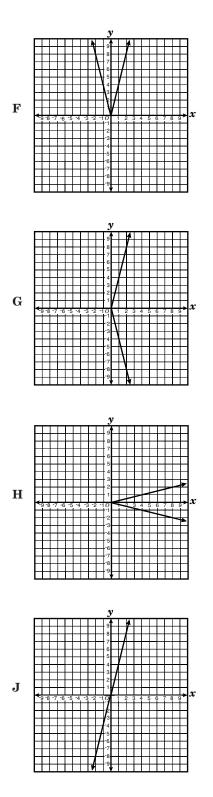
- 21 The time required to complete a job varies inversely as the number of people working. It took 4 hours for 7 electricians to wire a building. How long would it have taken 3 electricians to have done the job?
 - **A** 1 hr 43 min
 - **B** 5 hr 15 min
 - **C** 7 hr 30 min
 - **D** 9 hr 20 min

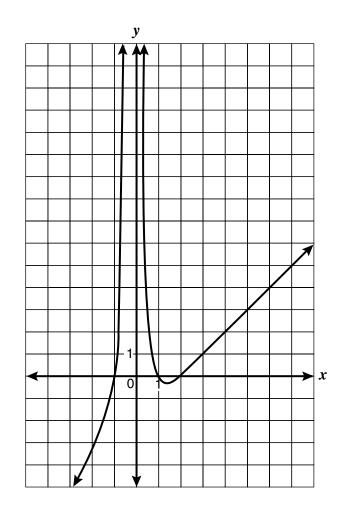
- 5 —



22 Which apparently is a graph of a quadratic function that has no real zeros?

23 Which graph shows the solution set for


|3x-2|=6?


GO ON

- **A** $-12 \pm 4\sqrt{5}$ **B** $-6 \pm 2\sqrt{5}$
- $\begin{array}{c} \mathbf{C} \quad \mathbf{6} \pm 2\sqrt{5} \\ \mathbf{C} \quad \mathbf{6} \pm 2\sqrt{5} \end{array}$
- **D** 12 \pm 4 $\sqrt{5}$

26 Which is apparently the graph of y = |4x|?

27 This is a graph of a rational function, f.

Which is *not* a solution of the equation f(x) = 0?

- **A** ⁻2
- **B** ⁻1

C 1

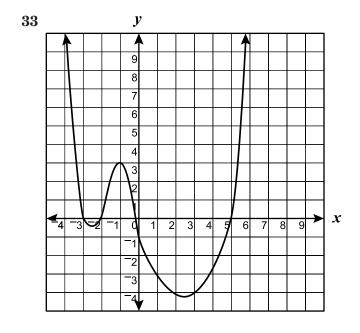
D 2

28 Which is the solution set for

 $3x^{2} - 4x - 15 = 0?$ $F \quad \left\{-3, \frac{5}{3}\right\}$ $G \quad \left\{\frac{2 \pm i\sqrt{41}}{3}\right\}$ $H \quad \left\{-\frac{5}{3}, 3\right\}$ $J \quad \left\{-\frac{2 \pm i\sqrt{41}}{3}\right\}$

- 29 What is the solution set for $\frac{1}{4}\sqrt{9+x} = 1$?
 - A {-7, 7}
 - **B** {-5, 5}
 - $\mathbf{C} = \{7\}$
 - $\mathbf{D} \{5\}$

30 For which value of *x* does


$$\frac{x-2}{18} = \frac{x-3}{15}?$$
F -8
G $\frac{-13}{3}$
H $\frac{13}{3}$
J 8

- 31 The length, s, (in feet) of the skid mark left by an automobile traveling at r miles per hour can be approximated by the relation $r = 2\sqrt{5s}$. At the scene of an accident, police measured a skid mark of 361 feet. About how many miles per hour was the car traveling when the brakes were applied?
 - **A** 42 mph
 - **B** 54 mph
 - **C** 76 mph
 - **D** 85 mph

- 8 -

32 Which function of x would have x-intercepts $\frac{1}{2}$ and 3?

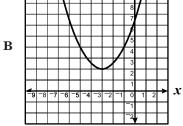
F $y = 2x^2 - 5x - 3$ G $y = x^2 - x - 6$ H $y = 2x^2 + 5x - 3$ J $y = 2x^2 + 7x + 3$

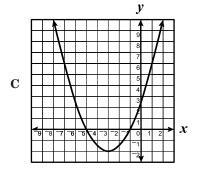
Which set contains 3 apparent zeros of the polynomial function shown?

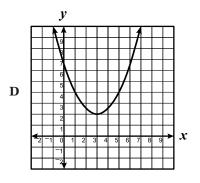
- A {-2.5, -1, 3}
- **B** {-3, -2, 5}
- C $\{-3, 1, 2.5\}$
- $\mathbf{D} \{-3, -1, 3\}$

- 34 If f(x) is a polynomial with only factors x, (x + 2), and (x 4), what is the solution set of f(x) = 0?
 - F {0, 2, 4}
 G {⁻4, 0, 2}
 H {⁻2, 0, 4}
 J {⁻4, -2, 0}
- 35 When graphed, which of the following equations would produce a circle?
 - **A** $x^{2} y^{2} = 9$ **B** x + y = 9 **C** $y = x^{2} - 9$ **D** $x^{2} + y^{2} = 9$
- 36 Which describes the graph of


$$\frac{x^2}{5} + \frac{y^2}{4} = 1?$$


- F An ellipse
- G A hyperbola
- H A parabola
- J A circle




37 Which could be the graph of

$$y - 2 = \frac{1}{2}(x + 3)^2$$
?

38 Buy-Rite Electronics has 3 locations each selling 3 different models of Convair radios. Matrix A shows the inventory of each model at each location.

Matrix B shows the cost of each model.

Model Cost

 $\begin{array}{c|c} X & [\$28.95] \\ Y & [\$82.39] \\ Z & [\$38.41] \end{array} = B$

For each location, which shows the total value of the inventory of all 3 models?

	South	\$110.10
F	Central	\$3,460.38 \$2,496.65
	North	\$2,496.65

South [\$3,300.30] G Central \$8,403.78 North \$6,606.52]

South [\$4,547.02] H Central [\$4,312.14] North [\$7,574.90]

South [\$4,197.75] J Central \$5,437.74 North \$6,798.57]

- 10 -

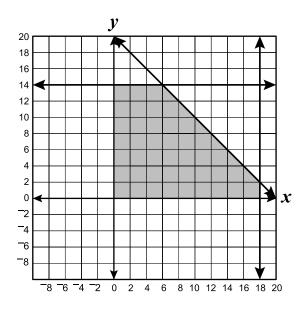
39
$$Q = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, R = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, T = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

Which product is *not* possible?

- A $Q \times R$ B $Q \times T$ c $R \times Q$
- **D** $R \times R$

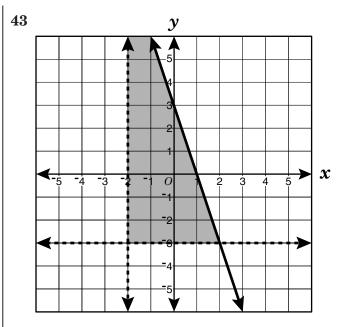
 $40 \quad \begin{cases} ax + by = q \\ cx + dy = r \end{cases}$

Which matrix equation is equivalent to the system of equations above?


$$\mathbf{F} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} q \\ r \end{bmatrix}$$
$$\mathbf{G} \begin{bmatrix} ax & by \\ cx & dy \end{bmatrix} = \begin{bmatrix} q \\ r \end{bmatrix}$$
$$\mathbf{H} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} q \\ r \end{bmatrix}$$
$$\mathbf{J} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} q \\ r \end{bmatrix}$$

41 What is the multiplicative inverse of
the matrix
$$\begin{bmatrix} 4 & -1 \\ -7 & 8 \end{bmatrix}$$
?
A $\begin{bmatrix} \frac{1}{4} & -1 \\ \frac{-1}{7} & \frac{1}{8} \end{bmatrix}$
B $\begin{bmatrix} \frac{8}{25} & \frac{1}{25} \\ \frac{7}{25} & \frac{4}{25} \end{bmatrix}$
C $\begin{bmatrix} \frac{8}{25} & \frac{7}{25} \\ \frac{1}{25} & \frac{4}{25} \end{bmatrix}$
D $\begin{bmatrix} -4 & 1 \\ 7 & -8 \end{bmatrix}$

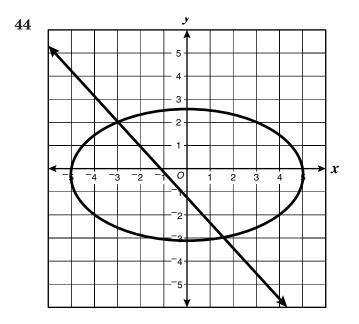
2003 Commonwealth of Virginia Department of Education



42 Tim makes posters on his computer. He gets \$5 for each regular size and \$8 for each large poster. To use linear programming to maximize income, Tim developed this feasible region from the set of constraints on his resources, where x = number of regular size posters and y = number of large posters.

How many of each size poster should Tim make in order to bring in the greatest amount of money?

- F 6 regular, 14 large
- G 8 regular, 12 large
- H 12 regular, 8 large
- J 18 regular, 2 large



Which system of inequalities best represents the graph shown?

A
$$\begin{cases} -3x + y < 3 \\ y < -3 \\ x > -2 \end{cases}$$

B
$$\begin{cases} -3x + y \le 3 \\ y > -3 \\ x > -2 \end{cases}$$

C
$$\begin{cases} 3x + y \le 3 \\ y > -3 \\ x > -2 \end{cases}$$

D
$$\begin{cases} y \le 3x - 3 \\ y > -3 \\ x > -2 \end{cases}$$

- 12 -

This is a portion of the graph of a system of equations. Which is most likely the solution set for the system?

- $\mathbf{F} = \{(1.5, 2.5), (3, 2)\}$
- $G \{(-2.5, 1.5), (2, -3)\}$
- $\mathbf{H} \quad \{(^{-}2, \ ^{-}3), \ (2.5, \ ^{-}1.5)\}$
- $\mathbf{J} \{(-3, 2), (1.5, -3)\}$

45
$$\begin{cases} 2y = x^2 - 6x - 9\\ 2y = -x^2 + 2x + 1 \end{cases}$$

What is the solution set for this system of equations?

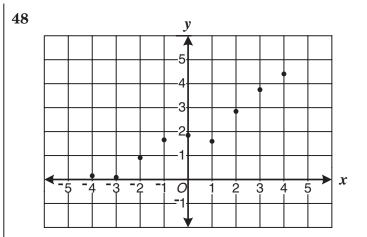
- A $\{(5, -7), (-1, -1)\}$
- **B** $\{(1, 1), (-5, 23)\}$
- $\mathbf{C} \quad \{(1,\, {}^-7),\, ({}^-5,\, 23)\}$
- $\mathbf{D} \quad \left\{ \left(2, \frac{1}{2}\right) \right\}$

46 The chart gives the average number of students per computer in public schools in America.

Year	Students per computer
1990-91	20.0
1991-92	18.0
1992-93	16.0
1993-94	14.0
1994-95	10.5
1995-96	10.0
1996-97	7.8
1997-98	6.1

Assuming a linear relationship, which is the best estimate for the number of students per computer during 1989–1990?

- **F** 5.4
- G 10.8
- н 20.2
- **J** 21.9

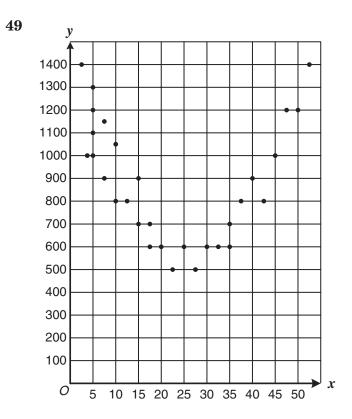


47 The chart shows city real estate taxes paid by four families and the assessed value of their homes.

Family	Hardy	Jacobs	Rosinni	Martinez
Value	\$50,000	\$80,000	\$100,000	\$150,000
Taxes	\$1,100	\$2,000	\$2,600	\$4,100

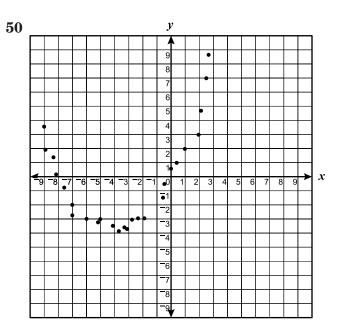
The tax on the Miller home was \$1,700. What was the assessed value?

- **A** \$60,000
- **B** \$65,000
- **C** \$68,000
- **D** \$70,000



Which is most likely the equation for the curve of best fit for the scatterplot above?

$$F \quad y = \frac{1}{2}x + 2$$
$$G \quad y = \frac{1}{8}x + 4$$
$$H \quad y = x + 2$$


$$\mathbf{J} \quad y = x - 3$$

_

Which type of function would best fit the data in this scatterplot?

- A Linear
- **B** Exponential
- C Logarithmic
- **D** Quadratic

Which equation most closely fits the data in this scatterplot?

F
$$y = \frac{2}{x} + 2$$

G $4y^2 = x^2 + 4$

H
$$4y = x^2 + 8x$$

$$\mathbf{J} \quad y = 2x - x^2$$

Answer Key

Test Sequence	Correct Answer	Reporting Category	Reporting Category Description	
1	D	001	Expressions and Operations	
2	G	001	Expressions and Operations	
3	D	001	Expressions and Operations	
4	Н	001	Expressions and Operations	
5	С	001	Expressions and Operations	
6	J	001	Expressions and Operations	
7	А	001	Expressions and Operations	
8	Н	001	Expressions and Operations	
9	А	001	Expressions and Operations	
10	F	001	Expressions and Operations	
11	А	002	Relations and Functions	
12	Н	002	Relations and Functions	
13	D	002	Relations and Functions	
14	J	002	Relations and Functions	
15	D	002	Relations and Functions	
16	H	002	Relations and Functions	
17	C	002	Relations and Functions	
18	G	002	Relations and Functions	
19	B	002	Relations and Functions	
20	H	002	Relations and Functions	
20	D	002	Relations and Functions	
21	F	003	Equations and Inequalities	
23	B	003	Equations and Inequalities	
23	G	003	Equations and Inequalities	
24	C	003	Equations and Inequalities	
26	F	003	Equations and Inequalities	
20	A	003	Equations and Inequalities	
28	H	003	Equations and Inequalities	
	С			
29	1	003	Equations and Inequalities	
30		003	Equations and Inequalities	
31	D	003	Equations and Inequalities	
32	F	004	Analytical Geometry	
33	B	004	Analytical Geometry	
34	H	004	Analytical Geometry	
35	D	004	Analytical Geometry	
36	F	004	Analytical Geometry	
37	B	004	Analytical Geometry	
38	Н	005	Systems of Equations/Inequalities	
39	A	005	Systems of Equations/Inequalities	
40	J	005	Systems of Equations/Inequalities	
41	В	005	Systems of Equations/Inequalities	
42	F	005	Systems of Equations/Inequalities	
43	С	005	Systems of Equations/Inequalities	
44	J	005	Systems of Equations/Inequalities	
45	A	005	Systems of Equations/Inequalities	
46	J	006	Statistical Analysis	
47	D	006	Statistical Analysis	
48	F	006	Statistical Analysis	
49	D	006	Statistical Analysis	
50	Н	006	Statistical Analysis	